Part Number Hot Search : 
480T0 N25F80 54ACS OP258 C3500 M7001 D2004 1084092
Product Description
Full Text Search
 

To Download V23990-K420-A40-P1-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k420-a40-pm preliminary datasheet miniskiip? 3 pim 1200v/100a solderless interconnection trench fieldstop igbt4 technology industrial motor drives v23990-k420-a40-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v maximum junction temperature t j max 150 c inverter transistor t sc t j =150c 10 s v cc v ge =15v 800 v t h =80c 127 74 75 1250 t j =25c t h =80c t h =80c t j =t j max t j =t j max t p limited by t j max 1200 175 20 w a a 67 300 collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c t j =t j max features miniskiip? 3 housing target applications schematic t p =10ms 500 input rectifier diode p tot a types i2t-value maximum ratings i fav a 2 s i fsm condition dc current v c v gate-emitter peak voltage maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings t h =80c a w dc forward current surge forward current power dissipation per diode i 2 t copyright vincotech 1 revision: 1
v23990-k420-a40-pm preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode brake transistor t sc t j =150c 10 s v cc v ge =15v 800 v brake diode thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm 90 t h =80c t h =80c 1200 51 300 300 127 20 t h =80c t h =80c t h =80c 90 1200 66 t j max t p limited by t j max c w a 175 maximum junction temperature short circuit ratings dc collector current power dissipation per igbt collector-emitter break down voltage repetitive peak collector current gate-emitter peak voltage v a v 175 maximum junction temperature c 1200 p tot v w v ge t j =t j max w a v a power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max v rrm p tot v ce i cpuls t j =t j max i c i frm t j max repetitive peak forward current power dissipation per diode repetitive peak reverse voltage dc forward current a t j =t j max t p limited by t j max a 51 300 t j =t j max i f t h =80c v rrm repetitive peak reverse voltage c maximum junction temperature t j max 175 -40?+(tjmax - 25) c storage temperature t stg -40?+125 c clearance insulation voltage creepage distance t op operation temperature under switching condition copyright vincotech 2 revision: 1
v23990-k420-a40-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 0.8 0.97 1.35 t j =125c 0.88 t j =25c 0.85 t j =125c 0.71 t j =25c 0.0035 t j =125c 0.0047 t j =25c 0.1 t j =125c 1.1 thermal resistance chip to heatsink per chip r thjh 0.93 thermal resistance chip to case per chip r thjc n/a t j =25c 5 5.8 6.5 t j =150c t j =25c 1.6 1.92 2.2 t j =150c 2.33 t j =25c 0.12 t j =150c t j =25c 600 t j =150c t j =25c 204 t j =150c 216 t j =25c 35 t j =150c 42 t j =25c 296 t j =150c 384 t j =25c 78 t j =150c 112 t j =25c 7.83 t j =150c 12.12 t j =25c 5.72 t j =150c 9.25 thermal resistance chip to heatsink per chip r thjh 0.75 thermal resistance chip to case per chip r thjc n/a t j =25c 1.5 2.47 2.7 t j =150c 2.46 t j =25c 68.3 t j =150c 91.3 t j =25c 267 t j =150c 455 t j =25c 5.69 t j =150c 15.08 di ( rec ) max t j =25c 2761 /d t t j =150c 977 t j =25c 1.87 t j =150c 5.42 thermal resistance chip to heatsink per chip r thjh 1.05 thermal resistance chip to case per chip r thjc n/a thermal grease thickness 50 m =1w/mk k/w thermal grease thickness 50 m =1w/mk k/w na tj=25c 7.5 tj=25c v v nc 100 q gate 1200 0 0 v ce =v ge c rss f=1mhz t r t d(off) i ges t d(on) v ge(th) c ies q rr t rr v f peak reverse recovery current reverse transfer capacitance reverse recovery time reverse recovered energy peak rate of fall of recovery current diode forward voltage gate charge 15 v ce(sat) i ces erec c oss r gint t f e on e off i rrm input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage value conditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 35 k/w v v ? ma reverse current i r 345 a c mws a/ s rgon=4 ? 20 15 rgoff=4 ? 600 15 100 15 collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current turn-on energy loss per pulse reverse recovered charge inverter diode integrated gate resistor inverter transistor gate emitter threshold voltage 100 100 0.0038 600 25 0 1500 thermal grease thickness 50 m =1w/mk rgon=4 ? 800 405 6150 ns ma v pf mws ? ns copyright vincotech 3 revision: 1
v23990-k420-a40-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 5 5.8 6.5 t j =150c t j =25c 1.6 1.92 2.2 t j =150c 2.33 t j =25c 0.12 t j =150c t j =25c 600 t j =150c t j =25c 198 t j =150c 215 t j =25c 44 t j =150c 54 t j =25c 292 t j =150c 378 t j =25c 73.5 t j =150c 113.4 t j =25c 10.3 t j =150c 15.2 t j =25c 5.67 t j =150c 8.97 thermal resistance chip to heatsink per chip r thjh 0.75 thermal resistance chip to case per chip r thjc n/a t j =25c 1.5 2.47 2.7 t j =150c 2.45 t j =25c 120 t j =150c 10500 t j =25c 37.8 t j =150c 53.3 t j =25c 304 t j =150c 599 t j =25c 5.01 t j =150c 14.17 di ( rec ) max t j =25c 477 /d t t j =150c 93 t j =25c 1.56 t j =150c 4.92 thermal resistance chip to heatsink per chip r thjh 1.05 thermal resistance chip to case per chip r thjc n/a t j =25c 0.97 1 1.03 t j =150c 2.23 rgon=4 ? v v mws c v pf a ns a/ s a k/w 0.76 %/k k ? 3 tj=25c tj=25c 800 345 100 100 0.0038 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage collector-emitter cut-off incl diode gate emitter threshold voltage r gint turn-off energy loss per pulse q gate gate charge input capacitance rise time turn-off delay time t d(off) reverse transfer capacitance e off turn-on energy loss per pulse turn-on delay time t f fall time t d(on) t r output capacitance reverse recovered charge c oss e on c rss c ies integrated gate resistor thermal grease thickness 50 m =1w/mk 0 f=1mhz k/w nc brake transistor recommended measuring current i ma 1 rated resistance r temperature coefficient a reverse recovery energy v f i r t rr q rr e rec reverse recovery time i rrm peak rate of fall of recovery current peak reverse recovery current i ges rgon=4 ? rgoff=4 ? v ce =v ge 15 0 ns 15 15 20 mws 0 ? 7.5 ma na brake diode diode forward voltage reverse leakage current thermistor thermal grease thickness 50 m =1w/mk 15 100 100 1200 1200 600 25 600 tj=25c tj=25c 405 6150 copyright vincotech 4 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 50 100 150 200 250 300 012345 v ce (v) i c (a) 0 20 40 60 80 100 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 012345 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 012345 v ce (v) i c (a) copyright vincotech 5 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 100 a r goff = 4 ? figure 7 output inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 100 a output inverter e on high t e off high t e on low t e off low t 0 5 10 15 20 25 30 0 20 40 60 80 100 120 140 160 180 200 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 5 10 15 20 25 30 048121620 r g ( ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1.5 3 4.5 6 7.5 0 50 100 150 200 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1.5 3 4.5 6 7.5 048121620 r g ( ) e (mws) copyright vincotech 6 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 100 a r goff = 4 ? figure 11 output inverter fred figure 12 output inverter fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 ? v ge = 15 v output inverter t doff t f t don t r 0.001 0.01 0.1 1 0 20 40 60 80 100 120 140 160 180 200 i c (a) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0 0.2 0.4 0.6 0.8 0 4 8 12 16 20 r gon ( ) t rr ( s) t doff t f t don t r 0.001 0.01 0.1 1 0 4 8 12 16 20 r g ( ) t ( s) t j = t jmax -25c t rr t rr t j = 25c 0 0.2 0.4 0.6 0.8 0 20 40 60 80 100 120 140 160 180 200 i c (a) t rr ( s) copyright vincotech 7 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 13 output inverter fred figure 14 output inverter fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 ? v ge = 15 v figure 15 output inverter fred figure 16 output inverter fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 ? v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 30 60 90 120 150 0 4 8 12 16 20 r gon ( ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 5 10 15 20 25 0 4 8 12 16 20 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 20 40 60 80 100 0 20 40 60 80 100 120 140 160 180 200 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 5 10 15 20 25 0 20 40 60 80 100 120 140 160 180 200 i c (a) q rr ( c) copyright vincotech 8 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 17 output inverter fred figure 18 output inverter fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c )d i 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 100 a r gon = 4 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0.75 k/w r thjh = 1.05 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0.11 2.2e+00 0.04 9.3e+00 0.42 3.8e-01 0.21 1.1e+00 0.16 1.0e-01 0.52 2.5e-01 0.04 9.2e-03 0.19 5.4e-02 0.02 4.7e-04 0.06 6.3e-03 0.03 6.4e-04 output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax - 25c di 0 /dt di rec /dt high t di rec /dt t j = 25c 0 1000 2000 3000 4000 5000 048121620 r gon ( ) di rec / dt (a/ s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 1000 2000 3000 4000 5000 0 20 40 60 80 100 120 140 160 180 200 i c (a) di rec / dt (a/ s) di rec /dt di 0 /dt copyright vincotech 9 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c single heating t j = 175 c overall heating v ge = 15 v figure 23 output inverter fred figure 24 output inverter fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c single heating t j = 175 c overall heating output inverter 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) i c (a) 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q ge ) at at d = single pulse i c = 100 a t h = 80 oc v ge = 15 v t j =t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 100 200 300 400 500 q g (nc) v ge (v) 240 v 960 v copyright vincotech 11 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 50 100 150 200 250 300 012345 v ce (v) i c (a) 0 20 40 60 80 100 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 012345 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 012345 v ce (v) i c (a) copyright vincotech 12 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 100 a r goff = 4 ? figure 7 brake igbt figure 8 brake igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 100 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 1 2 3 4 5 6 0 20 40 60 80 100 120 140 160 180 200 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1 2 3 4 5 6 0 4 8 12 16 20 r g ( ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 10 20 30 40 50 0 20 40 60 80 100 120 140 160 180 200 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 10 20 30 40 50 048121620 r g ( ) e (mws) copyright vincotech 13 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 100 a r goff = 4 ? figure 11 brake igbt figure 12 brake fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0.75 k/w r thjh = 1.05 k/w brake t doff t f t don t r 0.001 0.01 0.1 1 0 20 40 60 80 100 120 140 160 180 200 i c (a) t ( s) t doff t f t don t r 0.001 0.01 0.1 1 0 4 8 12 16 20 r g ( ) t ( s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 14 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fred figure 16 brake fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) i c (a) 0 40 80 120 160 200 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 15 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 0.928 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 30 60 90 120 150 0 0.3 0.6 0.9 1.2 1.5 1.8 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 50 100 150 200 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 16 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 1000 1200 1400 1600 1800 2000 25 50 75 100 125 t (c) r/ ? copyright vincotech 17 revision: 1
v23990-k420-a40-pm preliminary datasheet t j 150 c r g on 4 ? r goff 4 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of tdon, t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0.38 s t don = 0.22 s t eoff = 0.75 s t eon = 0.58 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t f = 0.11 s t r = 0.04 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 -20 10 40 70 100 130 160 -0.2 -0.05 0.1 0.25 0.4 0.55 0.7 0.85 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 2.8 2.95 3.1 3.25 3.4 3.55 3.7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0.25 0.3 0.35 0.4 0.45 0.5 0.55 time (us) % v ce i c t f i c10% i c 90% -50 0 50 100 150 200 250 2.9 3 3.1 3.2 3.3 3.4 3.5 time(us) % tr v ce ic copyright vincotech 18 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 60.10 kw p on (100%) = 60.10 kw e off (100%) = 9.25 mj e on (100%) = 12.12 mj t eoff = 0.75 s t eon = 0.58 s figure 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 100 a v c (100%) = 600 v i rrm (100%) = -91 a i c (100%) = 100 a t rr = 0.46 s q g = 597.46 nc switching definitions output inverter i c 1% v ge 90% -30 -10 10 30 50 70 90 110 -0.2 -0.05 0.1 0.25 0.4 0.55 0.7 0.85 time (us) % p of f e off t eoff u ce3% u ge10% -30 10 50 90 130 170 210 2.85 3 3.15 3.3 3.45 3.6 3.75 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -100 0 100 200 300 400 500 600 qg (nc) vge (v) i rrm 10% i rrm 90% i rrm 100% trr -120 -80 -40 0 40 80 120 2.8 3 3.2 3.4 3.6 3.8 4 time(us) % id vd fitted copyright vincotech 19 revision: 1
v23990-k420-a40-pm preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 100 a p rec (100%) = 60.10 kw q rr (100%) = 15.08 c e rec (100%) = 5.42 mj t qrr = 0.91 s t erec = 0.91 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 2.8 3.1 3.4 3.7 4 4.3 4.6 time(us) % id q r r -20 0 20 40 60 80 100 120 2.8 3.1 3.4 3.7 4 4.3 4.6 time(us) % p rec erec te rec copyright vincotech 20 revision: 1
v23990-k420-a40-pm preliminary datasheet version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k12-t-pm) v 23990-k420-a40-/0a/-pm k420a40 k420a40-/0a/ with std lid (black v23990-k12-t-pm) and p12 v23990-k420-a40-/1a/-pm k420a40 k420a40-/1a/ with thin lid (white v23990-k13-t-pm) v23990-k420-a40-/0b/-pm k420a40 k420a40-/0b/ with thin lid (white v23990-k13-t-pm) and p12 v23990-k420-a40-/1b/-pm k420a40 k420a40-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 21 revision: 1
v23990-k420-a40-pm preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. copyright vincotech 22 revision: 1


▲Up To Search▲   

 
Price & Availability of V23990-K420-A40-P1-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X